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Abstract

Understanding online conversations has attracted research at-
tention with the growth of social networks and online discus-
sion forums. Content analysis of posts and replies in online
conversations is difficult because each individual utterance is
usually short and may implicitly refer to other posts within
the same conversation. Thus, understanding individual posts
requires capturing the conversational context and dependen-
cies between different parts of a conversation tree and then
encoding the context dependencies between posts and com-
ments/replies into the language model.
To this end, we propose a general-purpose mechanism to dis-
cover appropriate conversational context for various aspects
about an online post in a conversation, such as whether it
is informative, insightful, interesting or funny. Specifically,
we design two families of Conversation Kernels, which ex-
plore different parts of the neighborhood of a post in the tree
representing the conversation and through this, build relevant
conversational context that is appropriate for each task being
considered. We apply our developed method to conversations
crawled from slashdot.org, which allows users to apply
highly different labels to posts, such as ‘insightful’, ‘funny’,
etc., and therefore provides an ideal experimental platform
to study whether a framework such as Conversation Kernels
is general-purpose and flexible enough to be adapted to dis-
parately different conversation understanding tasks.
We perform extensive experiments and find that context-
augmented conversation kernels can significantly outperform
transformer-based baselines, with absolute improvements in
accuracy up to 20% and up to 19% for macro-F1 score. Our
evaluations also show that conversation kernels outperform
state-of-the-art large language models including GPT-4. We
also showcase the generalizability and demonstrate that con-
versation kernels can be a general-purpose approach that flex-
ibly handles distinctly different conversation understanding
tasks in a unified manner.

1 Introduction
Online conversations on social media and discussion fo-
rums are an important part of the Web, offering vital emo-
tional support or information-seeking avenues. On many
platforms, users can reply to posts by other users. Thus, con-
versations tend to develop as trees, where each post (with the
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exception of the root or original post) has one parent (the
post it is replying to), and potentially many children (all the
posts replying to it). Such conversations can develop with-
out bound. For example, the BBC News article reporting on
former United Kingdom (UK) Prime Minister Tony Blair’s
thoughts on Brexit1 had attracted over 10,000 comments.
Similarly, there is an average of 42,600 tweets per day ex-
changed between UK Members of Parliament and their fol-
lowers (Agarwal, Sastry, and Wood 2019), emphasizing the
information flow between posts and replies.

Given the scale of such public conversations, there is
a need for automated methods for understanding conver-
sations and detecting various kinds of online posts. Exist-
ing efforts for understanding conversations include identify-
ing, for instance, whether a post contains hate speech (Paz,
Montero-Dı́az, and Moreno-Delgado 2020; Yin et al. 2023;
Agarwal, Chen, and Sastry 2023; Agarwal et al. 2021), par-
tisanship (Karamshuk et al. 2016; Agarwal et al. 2023) or
misinformation (Islam et al. 2020; Su et al. 2020).

There is a growing recognition that such conversation un-
derstanding tasks require taking into account the wider con-
text of the conversation, not just an individual post in iso-
lation (Pérez et al. 2023; Agarwal et al. 2022; Yin et al.
2023; Agarwal et al. 2024c). However, modelling the con-
text dependencies and information flows inherent in con-
versation trees is a challenging task. Moreover, many of
these approaches are based on pre-trained language models
(PLMs) such as transformers, where the encodings ignore
the distinctive dependency of a comment or reply on another
post (Gu et al. 2023).

In online conversations, posts are responses to other posts
and therefore may contain references to, or assume implicit
context drawn from them. Intuitively, leveraging the con-
text of the surrounding conversation when fine-tuning PLMs
may yield better contextualised representations of conversa-
tions. However, existing PLMs such as BERT (Devlin et al.
2019) are designed to handle sequential texts (Gu et al.
2023) but need to be enhanced to encode conversation tree
semantics.

Unfortunately, choosing the ‘right’ context is itself a dif-
ficult task – choosing the wrong context may lead to noise,

1https://www.bbc.co.uk/news/uk-politics-38996179, last ac-
cessed 22 Mar 2025.
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while on the other hand ignoring relevant posts could lead
to wrong conclusions. In addition, the ‘right’ or appropri-
ate context may differ from one conversation understanding
task to the other. In this work, we ask the Research Question
(RQ): Can we effectively capture the conversational context
and develop a flexible general-purpose mechanism to learn
the right context for different online conversation under-
standing tasks?

To learn what aspects of context are important for differ-
ent kinds of downstream post disambiguation tasks, we pro-
pose the notion of Conversation Kernels: flexible structures
that identify, given a particular post and a particular conver-
sation understanding task, which other posts in the conver-
sation provide the ‘right’ context. We design two families
of conversation kernels. The first is built on the concept of
node neighborhoods and considers all nodes in the one-hop
and two-hop neighborhoods of a post as potential context;
the second considers the tree structure of online conversa-
tions and uses the siblings (posts that share the same par-
ent), children (posts that have replied to the post being cat-
egorized), and the ancestral lineage (the parent post which
the post being categorized has replied to, its grand parent
and so on). In both cases, the conversation kernel architec-
ture consists of (1) a context retriever module that captures
the context through either of the defined kernel shapes, and
(2) a transformer-based context-augmented encoder module
that maps comments to their contextual embeddings.

To validate our framework, we crawl a slashdot.org
corpus of 1954 conversations, covering the period 2014 −
2022 and containing 509, 669 comments in total. We chose
slashdot.org as the comments on that site can have
multiple different labels applied to them, such as ‘funny’
or ‘insightful’. Thus, we can train conversation kernels
to recognise these very different kinds of comments and
thereby explore the generality and flexibility of the Conver-
sation Kernel framework.

We test our framework’s performance on the downstream
tasks of learning four different kinds of comments, chosen
as exemplars to showcase the generality of the architecture:
‘funny’, ‘informative’, ‘insightful’, and ‘interesting’. Nor-
mally, recognizing vastly different kinds of comments such
as ‘funny’ and ‘informative’ might be considered as differ-
ent NLP tasks that might require different kinds of models or
approaches, the conversation kernel architecture is designed
to be flexible such that specialized models for each task can
be learned using the same approach, thus greatly streamlin-
ing the process of conversation understanding.

Experimental results show that context-augmented con-
versation kernels can significantly outperform baselines
such as BERT, RoBERTa and LSTM, with absolute im-
provements in accuracy up to 20% and up to 19% for macro-
F1 scores across the range of the four exemplar tasks. The
model (trained on 2014–22 data from slashdot.org)
proves to be robust even when tested on previously unseen
data from a different time period (Jan – Nov 2023).

In recent years, large language models (LLMs) have
emerged as efficient zero- and few-shot learners that could
potentially achieve best-in-class performance on new text
classification tasks, such as labelling different kinds of com-

ments. However, our evaluations show that conversation ker-
nels also outperform state-of-the-art LLMs including GPT-
3.5 and GPT-4, which further highlights that choosing the
right context is a hard problem that may be difficult to solve
simply by using much larger models than ours.

We believe that the Conversation Kernel approach, of first
learning which parts of the structure of a conversation are
relevant context for a given conversation understanding task
and then augmenting models with this context as additional
input, holds significant promise. The two families of con-
versation kernel shapes we consider in this paper, as well
as the four exemplar tasks we evaluate it on should be seen
as proof-of-concept that this approach yields benefits. We
fully expect that future research will develop new families
of conversation kernels. To enable this line of work and to
enhance reproducibility, we have released the slashdot
dataset and the model code for non-commercial research2.

2 Related Work
The significant growth of users interacting on social me-
dia platforms has brought increased research interest in ex-
tending computational approaches developed for classifying
monologic corpora (e.g. news collections (Choi, Jung, and
Myaeng 2010; Awadallah, Ramanath, and Weikum 2012;
Fan et al. 2020) and reviews (Mukherjee and Liu 2012;
Wang and Ling 2016; Popescu and Etzioni 2005; Dave,
Lawrence, and Pennock 2003)) to the dialogic domain, in
order to make sense of such online conversations. Begin-
ning with efforts to classify harmful (hate) speech through
keyword-based (Davidson et al. 2017; Waseem and Hovy
2016) and statistical mining methods (Mihaylov, Georgiev,
and Nakov 2015; Xu and Zhu 2010), or deep neural ar-
chitectures applied to annotated datasets (Mozafari, Farah-
bakhsh, and Crespi 2020; Caselli et al. 2020; Wang and
Ling 2016), recent efforts have researched adding real-
world (Lin 2022) or commonsense (Basu Roy Chowdhury
and Chaturvedi 2021) knowledge to transformer-based ar-
chitectures to improve classification performance. These
background context-aware methods have been applied to de-
tecting latent hatred in tweets (Lin 2022) and irony or sar-
casm in news headlines and Reddit data (Basu Roy Chowd-
hury and Chaturvedi 2021). These studies highlight the im-
portance of adding context to tackle the challenges of lin-
guistic nuance and diversity, but also recognise that more
sophisticated structures are required to capture the informa-
tion flow between text and knowledge, especially in cases of
domain discrepancy between the two (Lin 2022).

Developing models for conversational dialogic data
brings new challenges, with ill-formed sentence struc-
tures, higher language variability (Mehdad et al. 2013) and
limited-length replies or comments that implicitly refer to
other posts within the same conversation. The classification
label (whether a post is funny or informative, etc.) may also
be apparent only in the context of the conversation (Ghosh
et al. 2023), requiring consideration of both local, i.e. lexi-
cal and structural, and global (dialogue act) contextual fea-

2The slashdot dataset and code are available at https://netsys.
surrey.ac.uk/datasets/slashdot.



tures (Allen, Carenini, and Ng 2014). A notable effort in
this direction is the CoSyn model (Ghosh et al. 2023) that
jointly models a user’s personal stance with a Fourier atten-
tion method and the conversational context using graph con-
volution networks, to detect implicit hate in a Twitter con-
versational dataset.

Initial efforts for slashdot.org conversation anal-
ysis looked at developing visual interactive systems for
analysing conversations (topic with related authors and com-
ments) (Hoque, Carenini, and Joty 2014), topic labelling
with phrase entailment (Mehdad et al. 2013) and assess-
ing the controversiality of posts by calculating the h-index
of the corresponding discusssion (Gómez, Kaltenbrunner,
and López 2008). Studies have also considered the dialogic
nature of slashdot.org conversations by applying Dis-
course Tree theory (Mann and Thompson 1988) for mod-
elling conversations as a collection of linked monologues to
detect disagreement (Allen, Carenini, and Ng 2014).

A smaller body of work has looked at identifying funny
vs. informative/insightful posts by modelling this as a multi-
label prediction task (Qin et al. 2019) or applying lexical
features (polarity, slang, emoticons etc.) to identify funny
posts (Reyes et al. 2010). These works reveal that compared
to other ‘funny’ disambiguation settings such as one-line
jokes or news headlines, lexical features are less discrimi-
natory in conversational data, with the underlying humour
mechanism derived from a discrepancy between two view-
points in conversations (Reyes et al. 2010), rather than lin-
guistic strategies such as irony or sarcasm or socio-cultural
context (Vanroy et al. 2020). Moreover, the funny and in-
formative categories were found to be quite similar (Reyes
et al. 2010). All these existing approaches fail to leverage
the structural dependencies between posts/replies, and the
contextual representations are also not learnt end-to-end.

3 Slashdot Dataset
The Slashdot3 technology-related online news forum en-
ables users to post articles and comment or respond to
other users’ posts, resulting in a tree-like dialogue struc-
ture (Allen, Carenini, and Ng 2014). The user moderation
and the formalised reply-to structure between comments en-
able directed and structured conversations (Allen, Carenini,
and Ng 2014), providing a valuable source for analysing
the dynamics of online discussions and the attitudes and
behaviours of online communities. Slashdot is organised
into various discussion topics, with popular categories be-
ing “Technology” (news related to information technology),
“Science” (scientific discoveries and breakthroughs), “De-
vices” (hardware and software news), and “Entertainment”
(movies and celebrity culture).

Crucially, the comments and posts are scored (from 1 to 5)
and categorized through a community-driven process, with
the following tags: ‘funny’, ‘informative’, ‘insightful’, ‘in-
teresting’, ‘off-topic’, ‘flamebait’, and ‘troll’. This provides
us with a unified platform where multiple conversation un-
derstanding tasks can be explored, for instance, how to learn
whether a post is ‘funny’ or not, ‘informative’ or not, etc.

3https://slashdot.org, last accessed 22 Mar 2025.
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Figure 1: Distribution of comments with respect to different
categories.

3.1 Data Collection Methodology
Following identification of the discussion topics to be
retrieved, our developed data scraping tool retrieves its
HTML content with the Selenium Webdriver running on the
Chrome browser. The tool design takes into account differ-
ent DOM structures of each discussion topic and retrieves
the complete data for all the comments in a topic. The re-
trieved HTML content is parsed using the BeautifulSoup li-
brary to extract only the required HTML tags for the topic
(i.e., topic name, topic id, content, author, and published
data) and for each comment inside the topic (comment ID,
parent ID, timestamp, discussion topic and text). The target
variable in our dataset is “category”, which represents the
comment category (funny, insightful, etc.). The “score” vari-
able indicates the community’s rating of the comment, with
higher scores indicating that the comment is well received
by other users. We focus on crawling large conversations
with 100 or more comments.

3.2 Dataset Statistics and Analysis
The collected corpus has data of 509, 669 comments from
1954 conversations from January 2014 to September 2022.
The average number of comments per discussion is 261.15,
with a minimum of 101 comments and a maximum of 864
comments in a discussion topic. This suggests that engage-
ment levels vary widely among discussion topics, with some
generating higher levels of comments than others. The aver-
age number of tokens or words per comment is 99.38.

Out of 509, 669 comments, only 70, 316 comments have
labels based on the nature of the comments. In order to bet-
ter understand the engagement levels on slashdot.org ,
we represent the total number of comments corresponding to
each category, as shown in Figure 1. The results show that
most of the comments fall into the four categories of ‘in-
sightful’, ‘informative’, ‘interesting’, and ‘funny’. Conver-
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Figure 2: Box plots showing the number of replies for each
category and score.

sations categorised as ‘insightful’ received the highest num-
ber of comments, numbering more than 33, 000. This was
followed by ‘informative’ comments at 14, 000, with sim-
ilar numbers for ‘interesting’, and ‘funny’ comments hav-
ing the smallest count of the four. In contrast, discussions
categorised as ‘flamebait’, ‘off-topic’ and ‘redundant’ ac-
count for less than 2% of the total comments, suggesting
that slashdot.org users are more likely to engage in dis-
cussions that are ‘informative’, ‘insightful’, ‘interesting’, or
‘funny’, and are less likely to engage with discussions that
are perceived as being ‘off-topic’ or not relevant.

An analysis of the relationship between score and cate-
gory in terms of the number of comments shows that posts in
the ‘informative’, ‘insightful’, ‘interesting’, and ‘funny’ cat-
egories received comments across all scorers with the high-
est number of comments having a score of 5, followed by a
steady decline in the number of comments as the score de-
creases. The remaining categories, on the other hand, show
comment score distribution between 1 and 2, with minimal
or no comments with other scores. These patterns suggest
that slashdot.org users are more likely to engage with
‘informative’, ‘insightful’, ‘interesting’, and ‘funny’ com-
ments.

Figure 2 provides a visual representation of the distribu-
tion of replies within each category and score. The box plots
show the median and quartiles of the number of replies, en-
abling identification of categories receiving the highest or
the lowest number of replies. For instance, a higher me-

Conversational Context Retriever
~ P(w | x)

Context-Augmented Encoder
~ P(y | w, x)

Everyone knows that the world will
end in 2038, on January 19.

y = Funny     ~ P(y | x)   

Input Comment

x

W

(x, W)

Kernel ShapeComments in
window W

Retrieve

Figure 3: Conversation Kernels

dian of the ‘insightful’ category suggests that users are more
likely to engage with and reply to insightful comments. Sim-
ilarly, users are more engaged with comments having scores
of 3 and 5.

Following these findings, we concentrate our analysis of
slashdot.org conversations to the four major comment
categories which attract the highest distribution of com-
ments and replies: ‘informative’, ‘insightful’, ‘interesting’,
and ‘funny’.

3.3 Problem Statement
We frame our problem statement as that of developing a
common framework to formulate the context window dis-
covery task concerned with comment nature prediction
for a diverse set of comments. We instantiate the frame-
work for mining slashdot.org conversational content
to determine whether a comment is insightful, interesting,
informative, or funny. Predicting the nature of comments
is a context-dependent task and requires understanding of
the conversational context to be able to predict whether
a comment is insightful, interesting, funny, etc. We first
pre-process slashdot.org conversations to convert them
into conversation trees using comment IDs and parent IDs
obtained while crawling these conversations. A conversation
tree (Agarwal et al. 2022; Boschi et al. 2021; Agarwal et al.
2023; Agarwal, Chen, and Sastry 2024) is a tree structure
where nodes are the comments and a directed edge from a
node to its parent indicates that the node replies to its parent
comment. We then input these conversation trees into our
framework which we discuss next.

4 Conversation Kernels
In this section, we introduce the concept of conversation
kernels and describe its model architecture. The Conversa-
tion Kernel has 2 components: conversational context re-
triever (described in Section 4.1), which extracts the relevant
conversational context driven by different kernel shapes;
context-augmented encoder (Section 4.2), which encodes
the conversational context together with the target comment
for online conversation understanding.

The conversation kernel architecture (Fig. 3) takes a tar-
get comment x as input and learns a probability distribution
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Figure 4: Illustration of different kernel shapes. Different
windows are depicted by different colors. Left: ancestor
(red), sibling (blue), children (green) windows; Right: one-
hop (red), two-hop (blue) windows. Target comment node is
in bold.

p(y|x) over all possible values of y. In our task of com-
ment nature prediction, y is a binary variable (whether a
comment is funny or not, insightful or not, and so on). This
decomposes the computation of p(y|x) into two steps: re-
trieval followed by encoder to predict the nature of com-
ments in online conversations. The conversational context
retriever module uses different kernel shapes to choose a set
of windows or shapes to capture the conversational context.
Let W be the set of n windows: W = {w1, w2, ..., wn}
and each window has fixed number of comments L: wi =
{c1, c2, ..., cL}. Given a target comment x, we first retrieve
relevant conversational context windows w from the set W .
We model this as a sample from the distribution p(w|x).
Then, we condition on both the conversational context w and
the target comment x to predict the output y as p(y|x,w). To
obtain the overall likelihood of predicting y, we treat w as a
latent variable and marginalize over all the possible values
of w as per below:

p(y|x) =
∑
w∈W

p(y|w, x)p(w|x) (1)

4.1 Conversational Context Retriever
The conversational context retriever module models p(w|x).
To capture the relevant conversational context, the retriever
module uses two different kinds of kernel shapes as follows:

Ancestors, siblings & children windows This kernel
shape has 3 windows each for the ancestors, siblings, and
children nodes in a conversation tree, as shown in Figure 4
(left). Each window w contains at most L comments from
a conversation tree. If a window has less than L comments,
it chooses all of them. But if a window has more than L
comments, it chooses the first L comments based on the
timestamp. It is important to fix the window size L since on-
line conversations can grow up to hundreds and thousands

of comments (nodes in a conversation tree). Ancestor win-
dow chooses L ancestors of the target node starting from its
parent in a conversation tree. Sibling window chooses L sib-
ling nodes for the target node except itself. Children window
chooses L children of the target node based on the times-
tamp. In case the target node is a leaf node, no nodes will be
chosen by the children window.

One- & two-hop neighborhood windows This kernel
shape has 2 windows for each of the one-hop and two-
hop neighbors of the target node in a conversation tree, as
shown in Figure 4 (right). Again, each window w contains
L comments. One-hop window selects first L direct neigh-
bors of the target node based on the timestamp in a conversa-
tion tree. Similarly, two-hop window selects first L two-hop
neighbors of the target node.

We propose these two kinds of kernel shapes because they
capture neighboring conversational context differently. For
example, ancestor-sibling-children windows are capable of
capturing far away ancestor and children nodes that are even
three or more hops away. On the other hand, one- and two-
hop windows capture neighborhood nodes that are local (one
or two hops away) to the target node. We envision that new
kernel shapes can be developed in the future based on dif-
ferent online conversation understanding tasks as different
kernel shapes may be helpful for different kinds of tasks.

Overall, the retriever module is defined using a dense in-
ner product model once it captures the context through either
of the kernel shapes as shown below.

p(w|x) = softmax (f(x,w)) (2)

f(x,w) = Embedcomment(x)
TEmbedwindow (w) (3)

In equation 3, Embedcomment and Embedwindow are em-
bedding functions mapping the target comment and com-
ments in a window w to fix-sized vectors. The relevance
score f(x,w) is the inner product of vector embeddings of
x and w. This relevance score assigns different weights to
different kinds of nodes based on the conversational context
and the task. The retrieval distribution p(w|x) is the softmax
over all relevance scores with respect to each of the windows
w ∈ W , as in equation 2.

For embedding functions, we use the transformer-based
RoBERTa base model (Liu et al. 2019) to map comments
to their corresponding contextual embeddings. We use the
RoBERTa model to generate contextual embeddings be-
cause it outperforms transformer-based BERT and LSTM
models (see Table 1). We then take embeddings correspond-
ing to the [CLS] token denoted as RoBERTa [CLS ]. Finally,
we perform a linear projection of the output embeddings,
denoted as a projection matrix W as shown in equation 4.

Embedcomment(x) = WcommentRoBERTa [CLS ](x) (4)

To compute embedding for a window w denoted by
Embedwindow, we have L comments. Once we get
[CLS] token embeddings from the RoBERTa model for
each of the comments cwi ∈ w, we take a mean of



their embeddings to get a resultant embedding because
it works better than max pooling in our experiments.
Again, this resultant embedding is linearly projected us-
ing a projection matrix W as shown: Embedwindow (w) =
WwindowMeancwi ∈w(RoBERTa [CLS ](c

w
i )).

4.2 Context-Augmented Encoder
Given a target comment x and a retrieved context win-
dow w, the context-augmented encoder models p(y|w, x). It
also uses the transformer-based RoBERTa (Liu et al. 2019)
model for mapping comments to their contextual embed-
dings. Firstly, it concatenates the target comment x with
comments cwi where i ∈ [1, L] in a context window w sepa-
rated by [SEP ] tokens as shown below:

joinRoBERTa(x,w) = [CLS]x[SEP ]cw1 [SEP ]...cwL [SEP ]
(5)

Then this concatenated text is input into the RoBERTa
model. The resultant embeddings corresponding to the
[CLS] token are extracted and assigned as shown below:

Embedencoder (x,w) = RoBERTa [CLS ](

joinRoBERTa(x,w))
(6)

Finally, these contextual embeddings are input into a
fully-connected layer, followed by softmax for predicting
the probabilities of output variable y:

p(y|w, x) = softmax (MLP(Embedencoder (x,w))) (7)

5 Experiments and Results
5.1 Experimental Setup
Firstly, we split the conversation trees from
slashdot.org into 80:10:10 split for training, vali-
dation, and testing sets, respectively. We treat the context
window discovery task for each category as a binary
classification problem with an appropriate balanced dataset,
e.g., for context discovery of ‘funny’ comments, we ran-
domly select equal numbers of ’funny’ and non-funny
(i.e. sampling from the other categories) comments to
make a balanced dataset for model input. We then input
conversation trees from the training set into the conversation
kernels model and train both the retriever and the encoder
modules together in an end-to-end fashion. We use a batch
size of 16, Adam optimizer with learning rate 1 × 10−5,
window size L = 3 and a linear learning rate warm-up
over 10% of the training data. We experiment with different
values of L ranging from 2 to 10 and find that L = 3 is
performing the best. We experiment with two different
kinds of kernel shapes as discussed in Section 4.1. We make
our model end-to-end trainable by minimizing the binary
cross-entropy loss computed based on the model predictions
and the ground-truth labels. We implement the model using
Transformers (Wolf et al. 2020) and PyTorch (Paszke et al.
2019) libraries and train it for 3 epochs. We use NVIDIA
Titan RTX GPU with 24 GB of memory for training.

5.2 Baselines and Evaluation Metrics
We compare our conversation kernels with the following rel-
evant baselines:

LSTM (Hochreiter and Schmidhuber 1997): The Long
Short Term Memory (LSTM) model is effective for multi-
class classification tasks. The input text is pre-processed to
remove stop words and the maximum length of the text se-
quences after tokenization is set to 256, with an embedding
dimension of 100. The target labels are one-hot encoded.
The model is trained with the Adam optimiser and mean
squared error as the loss function.

BERT (Devlin et al. 2019): The pre-trained Bidirectional
Encoder Representations from Transformers (BERT) is the
state-of-the-art model for sequence classification tasks. We
input individual slashdot.org comments, setting the
maximum sequence length to 75 and use Adam optimiser
with cross-entropy as the loss function.

RoBERTa (Liu et al. 2019): RoBERTa is a modified ver-
sion of BERT model, giving state-of-the-art performance in
various classification tasks. Similar to BERT, we input in-
dividual slashdot.org comments, setting the maximum
sequence length to 75 and use Adam optimiser with cross-
entropy as the loss function.

RoBERTa + context: This uses RoBERTa, but with ad-
ditional conversational context of the parent comment. The
input to the model is a comment and its parent separated by
the [SEP] token.

Evaluation metrics: We compare our conversation ker-
nels method to the above baselines in terms of classification
accuracy and the macro-F1 score. The macro-F1 score is re-
ported as a single score that balances both precision and re-
call metrics and because it treats each class equally, regard-
less of its frequency or imbalance in the dataset.

5.3 Results
Table 1 compares the performance of the conversation
kernels with the baselines. Among the baseline models,
RoBERTa performs the best in terms of macro-F1 scores
for ‘insightful’, ‘informative’, and ‘interesting’ categories.
For ‘funny’ category, RoBERTa with additional context per-
forms the best. Our proposed conversation kernel outper-
forms all the baselines both in terms of accuracy and macro-
F1 score, showcasing its effectiveness in modeling the con-
versational context for comment nature prediction, for all
the four conversation categories. We experiment with con-
versation kernels of two different kinds of kernel shapes as
discussed in Section 4.1.

The results show an improvement of 11.17% for the ‘in-
teresting’, and 7.46% for the ‘informative’ category, for
macro-F1 scores against the best performing RoBERTa
baseline, validating its ability to minimise both the false pos-
itive and false negative rate. The model also slightly outper-
forms the baseline RoBERTa model in detecting insightful
comments. In the case of ‘funny’ comments, our conversa-
tion kernel model shows an impressive performance on both
the accuracy (0.7957) and macro-F1 (0.7954) scores.

It is interesting that the ancestor-child-sibling windows
are the best performing family of kernel shapes for interest-
ing, informative and insightful categories, whereas the local



Insightful Informative Interesting Funny
Model Acc. macro-F1 Acc. macro-F1 Acc. macro-F1 Acc. macro-F1
LSTM 0.5590 0.5518 0.5988 0.6218 0.5780 0.5814 0.7406 0.7368
BERT 0.6345 0.6219 0.6997 0.6996 0.6320 0.6318 0.7665 0.7553
RoBERTa 0.6351 0.6278 0.7059 0.7058 0.6437 0.6403 0.7691 0.7610
RoBERTa + context 0.6361 0.6191 0.6965 0.6958 0.6366 0.6366 0.7698 0.7682
CK: anc-sib-child windows 0.6481 0.6330 0.7896 0.7804 0.7607 0.7520 0.7742 0.7741
CK: 1-hop 2-hop windows 0.6319 0.6320 0.7211 0.7005 0.6713 0.6461 0.7957 0.7954
GPT-3.5 (post + full conversation) 0.5293 0.5292 0.6227 0.6144 0.5360 0.4985 0.7747 0.7742
GPT-4 (post + full conversation) 0.5520 0.5328 0.6220 0.6185 0.5620 0.4993 0.7933 0.7895

Table 1: Accuracy and macro-F1 scores for different comment categories. CK denotes Conversation Kernels. The GPT-3.5 and
GPT-4 results are based on a random 10% stratified sample of the entire dataset.

Again already? But it just ended on Sept 23.

It's a buy one get one
free deal.

Everyone knows that the
world will end in 2038, on

January 19.

Nah, that was just the Rapture.
 All the true followers of Jesus
ascended to Heaven - didn't

you notice?

Upgrade the universe to 64-
bits already!

But then I'll need to reboot the
universe, and I still have a few

unsaved tabs.

Figure 5: An example ‘funny’ Slashdot conversation.

neighborhoods of the comment (1-hop and 2-hop windows)
are a more useful discriminative feature for distinguishing
funny comments from non-funny ones. Therefore, different
kinds of kernel shapes may be useful for different kinds of
conversation understanding tasks.

To understand why, we highlight one example ‘funny’
comment (in bold border) in Figure 5. The original post (par-
ent of the post being considered) has posted a URL of a web-
site announcing the end of the world, and our bolded post
has posted a funny reply. Notice that not only the comment
being considered, but also all the other comments in the two
hop neighborhood are funny, tongue-in-cheek comments re-
sponding back to the original post, or to the bolded post we
are looking at. Given this common pattern that one funny
post attracts other funny responses, the local one- and two-
hop neighborhood performs better for ‘funny’ comments. It
can also be seen that each funny comment is relatively self-
contained, and can be understood without too much addi-
tional context; thus the more local one- and two-hop neigh-
borhoods perform well.

5.4 Generalizability of Conversation Kernels
To show generalizability, we crawl an additional latest snap-
shot of Slashdot data from January to November 2023 con-
taining 13, 962 comments, as a sample from another time
period. We find that our conversation kernel, trained on the
slashdot.org dataset from 2014 to 2022, performs just

as well on the latest snapshot of the data which is previ-
ously unseen. Detailed performance results for conversation
kernel with ancestor-sibling-child windows are shown in Ta-
ble 2. Other social media platforms such as Reddit, X (Twit-
ter), etc. follow a similar tree structure of online conversa-
tions wherein a comment may attract multiple replies but it
can reply to exactly one parent comment leading to a multi-
threaded tree structure. Therefore, our conversation kernels
would also generalize to these social media platforms, en-
abling us to understand online conversations.

5.5 Comparison with LLMs
Given our goal of a general-purpose mechanism for discov-
ering context relevant to different tasks, it is natural to ask
whether general-purpose pre-trained Large Language Mod-
els (LLMs) (Naveed et al. 2023; Brown et al. 2020), which
have been proven to excel at a wide variety of tasks (Zhu
et al. 2023; Agarwal, Chen, and Sastry 2023; Agarwal et al.
2024a,b), could discover the right conversation context. To
test this, we perform a further baseline comparison, asking
GPT-3.5 (Ouyang et al. 2022) and GPT-4 (Achiam et al.
2023) to predict the comment nature. Using the prompts
in Figure 6, we provide these models with the comment
together with including the entire conversation as possible
context for LLMs.

To keep costs down, we performed this test on a random
10% sample of the entire dataset. LLMs also have a limit
of 8192 tokens; thus we are not able to provide the entire
conversation as input for long conversations. This affected
81 conversations. For these conversations, we first linearize
the entire conversation tree by ordering comments in tem-
poral order. To predict the comment nature for a given post,
we provide as context as many immediately preceding com-
ments of the post as would fit into the LLM token limit.

Table 1 shows that although GPT-4 consistently performs
better than GPT-3.5 model as expected, both LLMs do not
reach the performance obtained by Conversation Kernels
even though the LLMs have sight of the entire conversation.
LLM performance for identifying ‘funny’ posts is roughly
similar to Conversation Kernels, which could be explained
by the fact that funny posts are usually self-contained and
can be understood as funny without reference to surround-
ing posts for context. However, for the other three categories
(‘insightful’, ‘informative’ and ‘interesting’), Conversation
Kernels offer a 10 − 15% higher accuracy and macro-F1



Insightful Informative Interesting Funny
Dataset Acc. macro-F1 Acc. macro-F1 Acc. macro-F1 Acc. macro-F1
Jan-Nov 2023 0.6418 0.6310 0.7818 0.7784 0.7597 0.7509 0.7734 0.7730

Table 2: Performance of conversation kernels (with ancestor-sibling-child windows) on the latest Slashdot dataset from January
to November 2023.

We input the following prompts to GPT-3.5 and GPT-4
models to predict each of the comment categories,
given a slashdot.org comment along with the
preceding conversation as context.

Prompt for finding Insightful posts
Given the context of the entire conversation below,
classify the following text as “Insightful” or “Not
insightful”.
Conversation: <conversation text>
Text: <slashdot comment>

Prompt for finding Informative posts
Given the context of the entire conversation below,
classify the following text as “Informative” or “Not
informative”.
Conversation: <conversation text>
Text: <slashdot comment>

Prompt for finding Interesting posts
Given the context of the entire conversation below,
classify the following text into “Interesting” or “Not
interesting”.
Conversation: <conversation text>
Text: <slashdot comment>

Prompt for finding Funny posts
Given the context of the entire conversation below,
classify the following text into “Funny” or “Not
funny”.
Conversation: <conversation text>
Text: <slashdot comment>

Figure 6: Prompts for comment nature prediction tasks.

scores, indicating the benefit of learning the ‘right’ conver-
sation context.

6 Conclusions
This paper presents a unified approach to the problem
of conversation understanding, by developing a two-step
methodology of first understanding relevant conversation
context relevant to a task and then utilizing that context in
the downstream task. We propose Conversation Kernels as
principled and generalizable kernel shapes that are useful in
picking up as context all relevant comments surrounding a
particular post in a conversation thread that we are interested
in. Conversation kernel shapes are designed to first retrieve

comments that are “close by” (i.e., in the neighbourhood)
the post of interest, and then an attention mechanism is used
to give additional weight to those that are more relevant. We
show how this can be applied as a uniform approach to train
models for detecting widely different kinds of comments
such as ‘informative’, ‘insightful’, ‘interesting’ or ‘funny’.

To circumvent the problem that many conversation classes
may be difficult to define precisely, we build, as our first con-
tribution, a unique dataset of over 70,000 slashdot.org
posts, with examples of what Slashdot users considered to
be ‘informative’, ‘insightful’, ‘interesting’ and ‘funny’. To
enable reproducibility and further research, we share this
dataset at https://netsys.surrey.ac.uk/datasets/slashdot.

Although there are eight different labels that users can
apply to comments on slashdot.org (including labels
such as ‘troll’ or ‘flamebait’), our exploratory character-
ization reveals that users mostly engage with posts from
four categories: ‘informative’, ‘insightful’, ‘interesting’ and
‘funny’. As such, we set the task of developing a machine
learning (ML) pipeline that can predict whether or not a post
is considered to fall into one of these four categories by users
on slashdot.org .

The key contribution of the Conversation Kernel archi-
tecture is the development of a generalizable approach for
detecting relevant context needed for deeper conversation
understanding when posts often refer to other posts — for
example, a reply may only be funny in the context of the
post it is replying to. As proof of concept of the efficacy of
our approach, we develop two families of kernel shapes to
retrieve comments surrounding a post that is being classi-
fied, and perform the classification of a post after augment-
ing it with context built up from the retrieved surrounding
concept. The first kernel shape we develop uses ancestors,
siblings and children nodes of a post as context windows.
The second uses one-hop and two-hop neighborhoods of the
post in question.

Our evaluation shows that conversation kernels outper-
form other relevant baselines such as LSTM, BERT and
RoBERTa with additional context for all categories we con-
sider. Ancestor, sibling and children context windows per-
form the best for categorizing posts as insightful, informa-
tive and interesting, whereas the 1-hop and 2-hop neighbor-
hood windows perform the best for funny posts. We also
show that the Conversation Kernel approach outperforms
much larger LLMs, showcasing the difficulty and impor-
tance of retrieving the right context.

We believe that the conversation kernels approach intro-
duced in this paper is generalizable in two ways: First, the
two families of kernel shapes we introduced in this work
are merely intended as proof-of-concepts. We aim to explore
other kernel window shapes, including strategies of mixing



and matching windows across different families, as well as
exploring the relevance of comments from non-local win-
dows. Second, we believe that the conversation kernel ap-
proach can be applied to other subjective labels as well as
more objective topics. We will demonstrate this by adapt-
ing our method to other datasets and also to other important
and well studied tasks in conversation understanding, such
as identifying spam, misinformation and hate speech, espe-
cially in cases where hate or misinformation may be ‘im-
plicit’ and conveyed with reference to the parent or other
nearby posts. Also, we compare conversation kernels with
LLMs in a zero-shot setting using prompting. However, fine-
tuning of the LLMs is also possible using techniques such as
Low-rank adaptation (LoRA) (Hu et al. 2021) and we would
like to explore interesting possibilities of integrating conver-
sation kernels with LLMs and explore related directions for
selecting appropriate conversational context.

6.1 Limitations
In forums such as BBC’s Have Your Say?4, there is no ex-
plicit threaded reply structure, requiring us to infer from the
text of a reply which other post it is replying to, to construct
conversation trees. In this less restrictive user interface, a
single post may refer to or reply to multiple other posts, cre-
ating more than one edge and a conversation structure that
is no longer a tree but a more general graph. We believe that
conversation kernels would work in this more general con-
text as well, with 1-hop and 2-hop windows sampling all the
available conversational context. However, this has not been
tested empirically.

Conversation kernels make use of conversation context
from surrounding posts. While conversation kernels can la-
bel each post as a conversation evolves and new posts are
added, it becomes more effective only after a reasonable
number of replies have been added. At the beginning of a
conversation, when not a lot of conversational context is
available, conversation kernels will likely to perform simi-
lar to baseline models such as RoBERTa, which also operate
without the additional context.

Currently, conversation kernels are trained on English
conversations. However, with widespread multilingual on-
line conversations and conversations in low resource lan-
guages, there is a need to build models for online conversa-
tion understanding in multilingual and low resource settings.
It is easy to adapt conversation kernels for low resource and
multilingual settings by using language models trained on
specific languages in the retriever and encoder components
of the model.
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Gómez, V.; Kaltenbrunner, A.; and López, V. 2008. Statisti-
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Ethical Statement
Although we believe that Conversation Kernels are an ab-
stract approach which then need to be applied in different
application contexts where sensitive issues of ethics and le-
gality might apply, we conclude by considering two such
issues for completeness.

Firstly, this paper intentionally applies the Conversation
Kernel approach to relatively uncontroversial kinds of com-
ments such as ‘funny’ or ‘informative’. However, as high-
lighted above, the approach is generalizable to other tasks
such as detecting hate speech, including in highly sensi-
tive contexts such as political conversations (Agarwal et al.
2021) where greater care will need to be taken to ensure that
the right context is considered, as mistakes of both omission
(not detecting a hate speech act) and commission (wrongly
detecting a valid or legal post as hate speech) can have dis-
astrous consequences. This requires further empirical exam-
ination and is beyond the scope of the current paper.

Secondly, as with many other AI/ML models, the efficacy
and correctness of conversation kernels greatly depends on
the underlying data used to train the model. Thus, the train-
ing dataset and its biases need to be kept in mind for any
downstream applications. For example, what is considered
‘funny’ by Slashdot users (who are mostly from the tech
community) may not align with other communities.

Despite the above ‘obvious’ limitations and ethics consid-
erations, we believe the generalizability of the conversation
kernel approach, as well as its efficacy in a wide variety of
conversation classifications, makes it a useful addition to the
arsenal of tools being developed for online conversation un-
derstanding.


