GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates


Abstract

Online forums that allow participatory engagement between users have been transformative for public discussion of important issues. However, debates on such forums can sometimes escalate into full blown exchanges of hate or misinformation. An important tool in understanding and tackling such problems is to be able to infer the argumentative relation of whether a reply is supporting or attacking the post it is replying to. This so called polarity prediction task is difficult because replies may be based on external context beyond a post and the reply whose polarity is being predicted. We propose GraphNLI, a novel graph-based deep learning architecture that uses graph walk techniques to capture the wider context of a discussion thread in a principled fashion. Specifically, we propose methods to perform root-seeking graph walks that start from a post and captures its surrounding context to generate additional embeddings for the post. We then use these embeddings to predict the polarity relation between a reply and the post it is replying to. We evaluate the performance of our models on a curated debate dataset from Kialo, an online debating platform. Our model outperforms relevant baselines, including S-BERT, with an overall accuracy of 83%.

Dataset and Codes

An anonymized version of the dataset and codes used in our paper are available for the research community.

  1. Kialo Dataset: This dataset contains discussion trees for Kialo online debates.

  2. Codes: Implementation details and codes for GraphNLI are available on GITHUB.

You can find the format of the Kialo dataset here.


Contact Us


If you are interested in using this data, please fill the form to . Request specific data to get the link where you can download the data.

We are sharing the dataset under the terms and conditions specified here below. Please note that submitting the form indicates that you accept the terms and conditions of the data. In the form, please indicate which part of the dataset you need. If you do not get any email notification for your logged request within 24 hours, please e-mail us at netsys.noreply[at]gmail.com.

Dataset Terms and Conditions

  1. You will use the data solely for the purpose of non-profit research or non-profit education.

  2. You will respect the privacy of end users and organizations that may be identified in the data. You will not attempt to reverse engineer, decrypt, de-anonymize, derive or otherwise re-identify anonymized information.

  3. You will not distribute the data beyond your immediate research group.

  4. If you create a publication using our datasets, please cite our papers as follows.


@inproceedings{agarwal2022graphnli,
  title={GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates},
  author={Vibhor Agarwal and Sagar Joglekar and Anthony P. Young and Nishanth Sastry},
  booktitle={The ACM Web Conference (TheWebConf)},
  year={2022}
}